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Free convective structures have attracted considerable interest in recent years because this characteristic 
type of flows, which arises under the action of comparatively small buoyancy forces caused by minor differences 
in density of the fluid existing in a mass force field, is frequently encountered under natural conditions and 
in technological processes. It is thermoconcentrational convection that is responsible for the formation of 
fine structures (spatially regular in depth) of the ocean, of the atmosphere of planets and stars, of the  
earth's mantle, and of other geophysical systems [1]. Also, convective flows are often spatially ordered in a 
horizontal direction. The scales of these structures vary in extremely wide ranges, from several millimeters 
in the laboratory up to tens of thousand kilometers in the sun's atmosphere. The flow pattern depends on 
the  geometry and dimensionality of the source and on the medium's stratification [2, 3]. In a homogeneous 
medium, the jet over a point heat source can initially be laminar but loses stability aqd becomes turbulent 
at some height. In a thermally stratified medium, the heated particles pass the neutral buoyancy level, and 
are then decelerated and fall on it, forming a typical mushroom-shaped jet [4]. In a medium with steady 
stratification of admixture, two main types of structures are observed: cells elongated along the horizontal 
and separated by high-gradient interlayers (a "thermohaline stair") [1, 4] and cells elongated along the vertical 
("salt fingers") [4]. The types of convective structures are described in [1, 4] and the theory of convectional 
heat and mass transfer is given in [2]. 

Experimental investigations of convection over a localized (point) source [5, 6] and over an extended 
(linear) source [7] have shown that "salt fingers" are also present inside the cells. This extremely hinders the 
development of adequate theoretical models, which should necessarily take into account the nonlinearity of the 
equation of state for the medium, the Soret and Dufour effects, admixture and heat transfer, and dependences 
of the kinetic coefficients of the medium, of the thermal expansion, and of the salt compression coefficients 
on the state parameters. 

In studies of the main convection laws, the equations of motion are usually written in the Boussinesq 
approximation and are additionally simplified according to the chosen model of the process. The involvement 
coefficients are considered constant [8, 9] and linearized systems are used [10, 11]. 

In analyzing a system of nonlinear nonstationary equations with complex boundary conditions, 
one should apply reasonably powerful mathematical methods. One of them is theoretical group analysis, 
which allows one to study the invariant properties of the equations of thermoconcentrational convection. 
Apparently, one of the first attempts at such analysis was undertaken by McKenzie [12], who has studied only 
crystallographic symmetry groups that are admitted by the system of equations of thermoconcentrational 
convection. A complete group analysis of the equations has been performed in [13]; as a result, dependences 
of the scales of dynamic structures that arise on the power generated by a heat source were obtained. At the 
same time, many questions arising in studies of thermoconcentrational convection have not been answered in 
[12, 13]. 
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The goal of this paper is to derive a partially symmetrized from for the initial nonlinear nonstationary 
system of the convection equations. This form is more convenient in using group analysis to determine 
invariant properties and in finding relationships of spatial-temporal scales of flows in a form that allows 
direct comparison with experiment. 

S t a t e m e n t  of  t h e  P r o b l e m .  The system of equations of thermoconcentrational convection for a 
multicomponent medium in the Boussinesq approximation has the form [14] 

0u ( ) 
o-7 + (uV)u  = - v p  + .zXu + g - a T  , 

| 

at + V .  (5'iu) = kiAE;i + Hi(R,  t), O"--t + uV~' = XA~' + F(R,  t), 
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Here p is the pressure minus hydrostatic pressure, which is normalized by p0; p and p0 are the total 
density of the medium and the density of the medium in the absence of admixtures; u is the velocity field; T, 
To(z), and T are the total, stratifying, and excess temperatures; 5'/, SOl(Z), and 5'/are the total, stratifying, and 
additional concentration of the ith admixture; u, X, and k/are  the kinematic viscosity, thermal conductivity, 
and diffusivity of the ith admixture; a and 13{ are the coefficients of thermal expansion and of salt compression 
for the ith admixture; F ( R ,  4) and Hi(R, t) are the sources of heat and of the ith admixture. 

Since the aim of this work is a group analysis of system (1), we may not now specify the initial and 
Boundary conditions. 

The solenoidal part of the velocity field makes the main contribution to the temperature and admixture 
transfer due to the convective terms u V T  and uVS/. Therefore it is convenient to divide u into potential and 
solenoidal components. We cannot simply assume that the potential component of the velocity equals zero, 
because it describes expansion of an element of the medium and, thus, gives rise to buoyancy forces, which 
participate in the formation of convective flow. A linear combination of some equations of system (1) (without 
using the Navier-Stokes equation), in view of the fact that in real situations a f '  << i, yields 

~7 . u .."~ A ( x a T -  ~i13iSi ) + aF. (2) 

Using (2), it is possible to pass over from the analysis (solution) of system (1) to an analysis (solution) 
of an approximate system, in which the continuity equation is replaced by the equation ~7 �9 u = 0. Then the 
solution of (1) will be reduced to the consecutive solution of the approximate system followed by substitution 
into (2) of necessary temperature and admixture distributions and by determination of the potential part of 
the velocity field. The sum of solutions of the approximate system and Eq. (2) gives an approximate solution 
of system (1). 

The following step in preparing system (1) to analysis involves the preliminary symmetrization of the 
equations of thermoconcentrational convection with respect to the variables T and Si. 

I n t r o d u c t i o n  of Genera l i zed  Di s tu rbances  of Densi ty .  In [2, 13, 14] combinations of the form 
j 3S -  aT,  x13S - ksaT ,  x a T  - ks13S, etc., were chosen. It can be noticed that the first combination enters in 
the Navier-Stokes equation of system (1), and the third, in relationship (2). The transition from the system of 
variables (T, S) to a system of any two of the above-mentioned combinations brings about not only a change in 
the notation of the fundamental equations but also the appearance of combinations of the type x2aT - k213S, 
k~aT - X213S, etc. As a result, it becomes possible to pass over to a new, more complex pair (or a system in 
the case of multicomponent media) of combinations of physical fields. In doing so, we have no assurance that 
the combinations chosen as the main are the most optimal combinations. For all the abundance of variations, 
nevertheless, there is a possibility of describing all actually combinations that arise by means of a unified 
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approach. This is achieved by introducing generalized disturbances of density. 
First we consider a combination of the form 

m x =  aT 

~ x/(u+~) 

N 
- E ;sj 

j=l x k,) 

a/(N+l) 

(A is an arbitrary number). In this case the following relation holds: 

~oAIA2...~NAN+ 1 mAN+2 4- ~OA2A3...~N+IAN+2m~I "Jv ~O~3A4...AN+2A 1 mA 2 4- �9 �9 �9 + ~OAN+2~ 1...),NmAN+I 

where 

� 9  # ,~ i  

#)'J /~a . . .  
~OXlXj...Xk),,, = det ; # ; / z j  = 

\i=1 ] 
X i~# j k i 

(3) 

= 0, (4) 

1/(N+a) 

A distinctive feature of combinations (3) is that they describe all the possible combinations of T and 
Si obtained in system (1) by linear combination of its equations�9 If the N value is odd, only the plus signs 
in (4) are taken, and if this value is even, the signs are alternated. The matrix composed of the elements 
~oxixj...x~, is antisymmetric, i.e., with an even rearrangement of the indices, the sign of the element of the 
matrix does not change, and with an odd rearrangement the sign changes. If even two indices coincide, the 
element vanishes. 

From (4) it is evident that choosing arbitrarily N +  1 values of the index ,k, we obtain a system for N +  1 
functions {m),}, which describe any generalized disturbance of density�9 Without specifying the chosen values 
of Ai, we can express, using (3), the temperature and concentration of admixtures in terms of the system 
{rnx}. Substituting the result into system (1), we obtain the equations of thermoconcentrational convection 
in a form that involves any combination of T and Si in the most general form without specification, which 
can be carried out after the system is solved in the general form. 

P a r t i a l l y  S y m m e t r i z e d  S y s t e m  of  E q u a t i o n s  of  T h e r m o c o n c e n t r a t i o n a l  Convec t ion  in a 
M e d i u m  w i t h  O n e  A d m i x t u r e .  It is not difficult to transform the variables T and {S/} in system (1) 
to the variables {rex} using relationship (3). For large N, however, this involves cumbersome manipulations; 
therefore, for simplicity, we consider a medium with only one admixture - -  salinity. Then the system of 
generalized density disturbances has the form 

rn,x = ( x l k s )  ~'12 a T  - ( k s l x )  "x12 t32 

(ks is the diffusion coefficient of salt). 
Choosing two functions m- t and ms with arbitrary indices 7 and 5, expressing T and S in terms of 

these functions, and substituting the result into the approximate variant of system (1), we obtain a system 
of equations of the form 

0u 
O--'t- + (uV) u = - V p  + vAu + g (a.rrn ~ + hun6) , 

Ot + u .  V m .  r + w ~ + = k'rArn'r + k6-rAm~ + Q'r, (5) 

0---[- + u .  Vm~ + w + = k~Arn8 + k.ysAm.r + Qs, V .  u = 0. 
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Here u = (u, v, w); AT and As are the temperature and salt stratification scales; 7 ~ 5; 

T ~ = (X/ks))'/2 aTo; S ~ = (ks/)(.) ~12 ~S0; Q~ = ()(./ks))'12 a F  - (ks/X))'12 flU; A = 7, ~; 

a-r = cp0d~a76; a 5 = qoOTAO$7; ]r X--Its', ]c 7 = (X(X/kS) ('y-5)/2 - ]r162 ('y-6)/2) /cp.y~; 
qo76 

}5 = ( } s  ( x l } s )  - x ( } s i x )  = ( x l } s )  - ( } s i x )  c"-p )p .  

System (5) involves only the ratios and differences of the kinetic coefficients X and ks, i.e., the system 
is symmetrized with respect to them. The coefficients av and a5 and k~, k6, k~6, and k6~ are mutually 
symmetric, and (5) is symmetric  with respect to them. The generalized sources Q~ also have a symmetric 
form. In addition, (5) is symmetric with respect to the generalized density disturbances. In contrast to (1) 
in which there is a distinction between T and S, the functions m~ and m6 in (5) are absolutely equivalent, 
i.e., system (5) is a system of symmetrized form. This symmetrization, however, is partial because it does not 
involve symmetrization between ~, and (X, ks) and also between the vector fields u and (~Tm-t, Vrns). 

Lie G r o u p  of  Spec ia l  F o r m .  The standard group analysis of system (5) consists in finding a 
continuous group of the form [15] 

G . cO = A &  + BcOy + CcOz + DcOt + VO~ + VcOv + WcO,~ + EcO v + M~cOm~ + M~cO,,, s, (6) 

which preserves the invariance of (5) with respect to transformations of the differential {x, y, z, t} and field 
{u, v, w,p, rn.r,m~} variables that  are described by relationship (6). Use of this transformation, however, does 
not permit  one to find the invariant properties of system (5) in relation to changes in the stratification scales 
AT and As, which are of great interest. In this work, therefore, a group of special form is used: 

C . cO = G " (9 + LTCOAT + LSCOA s. (7) 

In this case, the rule whereby the first and second continuations of the group G .  CO are sought for is 
that  A, B,  C, D, U, V, W,  E,  My, M~, LT, and Ls are considered functions of all variables of the problem, 
including AT and As, and differential but field variables as group analysis variables are not functions of AT 
and As, i.e., AT and As can be considered parametric variables. Of course, the fields of u, v, w, p, rn.~, and rn~ 
as solutions of system (5) are functions of x, y, z, t and AT, As, but in terms of group analysis field variables 
have a somewhat different meaning. 

In the analysis of (5) we first seek a group of differential operators of this system, i.e., a group of the 
system in which the functions of the sources Q.~ and Q~ are set to zero. 

Application of special group (7) to this reduced system allows determination of the infinite-dimensional 
group of transformations G.  CO, whose generators have the form 

G1 �9 0 = xO~ + yO N + zOz + 2tOt - uO~, - vO, - wow - 2pOp - 3m~Om.r - 3m~Om6 + 4ATOAT + 4AsOAs, 

OA 02A OB O2B 
G2 . 0 = yO• - JcO~ + vO,, - uOv, G3 . 0 = AO, + -~0 , ,  - --O-~-xOp, G4 . 0 = BOy + - ~ 0 ~  - --~-yOp, 

O C o 0 2 C A  ( T ~ 1 7 6  ) 
G s . O = C O ,  + - - ~  ~ - - - f f ~ - z O , - C  -~T +--~S (gzOp + kV/2Om.~ + k~/20m6), G 6 " O =  DOt, 

(s) 
G7 �9 O = EOp, Gs �9 O = gzO v + k'd2 Om.~ + k~/2 Om6, G9 �9 0 = gzOp + k-~/2 Om~ + k-6/2 0,n6, 

gz 2 _ A~ a g z2 
C10 �9 O = --~-0p + k'~/2zco,nw + kSI2zOrnS + -~UAT , Gll �9 0 = -T0p  + k-'r/2zOm. + k- /2zOm5 + S--fUns, 

G 1 . 0  = gJ(A, z, t)Op + k+7/2J',Om.~ + ki6/2J~Om s + a---~Jz,UA~. 
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Here A, B, C, and E are arbitrary functions of t, AT, and As and D is an arbitrary function of AT and AS; 

{} {} A-- Xks " A.~= As AT ; R~- -  SO ; k = X / k s ;  

z, t) = J t) d(, 
0 

is a solution of the equation (~'~,t - A~r162 = 0, 

-Jl- OO 

where ~,~((, t) = ] ~(~)e ifr d~ 

and ~o(~) is an arbitrary function such that  

< oo, Ir162 < oo. 

Thus for the upper value of )~ in braces we take the upper values of Ax and R~ and the plus signs in 
the expressions for G.~ �9 c3; conversely, for the lower value of ~, we take the lower values of A.~ and R~ and 
minus signs. 

It should be noted that  multiplication of any generator Gi.O by an arbitrary function of the stratification 
scales AT and As yields a new generator, which, as applied to system (5), leaves it invariant. 

Some generators of system (8) have a reasonably clear physical meaning. Thus, the generator G1 �9 c3 
describes the scale-invariant properties of solutions of system (5); G2 �9 0 points to the cylindrical symmetry 
of convective flow about the z axis; G3 .0 ,  G 4 . 0  and Gs �9 c3 are generators of Galilean transforms, which take 
into account changes in the pressure field of the medium; G6 �9 0 points to the invariance of solutions with 
respect to t ime shifts; G7 �9 c3 reflects the fact that  the forces generated in the medium by the pressure are 
purely potential; and G8 �9 6q and G9 �9 0 indicate that  if the generalized densities receive constant additives, the 
isobars in the medium are displaced along the z axis. 

To elucidate the physical meaning of the generators G10 �9 c3 and Gh  . 0, we integrate their linear 
combination 

G . c9 = aGlo �9 ~ + bG11 �9 c9, (9) 

where a and b are arbitrary numbers. 
Integration of (9) and transformation to the variables T and 5' leads to explicit form of transformations 

that  leave system (5) invariant: 

T * = T + a e z / a ,  S * = S - b e z / f l ,  p * = p + e ( a + b ) g z 2 / 2 ,  (10) 

AT A s  
- A r  ' A*s - h s  

1 - ae aTo 1 - be flSo 

(the asterisk denotes the new variables and ~ is an arbitrary parameter of the transformations). 
From (10) it is seen that  with appropriate changes in the temperature and salt stratification scales 

(relationships for A~, and A~) and with additional stratifying additives to the temperature and salinity fields 
(relationship for T* and S*) such that  the scales of these stratifications are inversely proportional to the 
coefficients of thermal expansion and of salt contribution to density, the pressure field isobars (relationship 
for p*) either crowd together (at a + b > 0) or are thinned out (for a + b < 0). For a + b = 0, the pressure 
field does not change, nor does the field of density disturbances change, since in this case 

p* = flS* - a T *  = f l S -  a T  - (a + b)ze = f l S -  a T  =-- p. 

I t ' should be noted that  the total temperature T and total salinity S distributions are invariants of this 
transformation, since 

( z ( ( z )  
= - + T + a ~ z = T o  I + ~ T  + T - - T .  T * - T ~ ( z ) + T *  To 1+ +T+ar176 I+~TT 1 ~00 ] /  a 

A similar sequence of relationships holds for S. This means that  the concentration of isobars has a purely 
hydrostatic character [this is confirmed by the type of the additive (a + b)gz2r  to the pressure field] and 
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does not influence the character of convective flow, which is in complete agreement with rejection of the 
hydrostatic term of pressure in system (1). 

It seems impossible to elucidate the physical meaning of the infinite set of generators Gx" 0 in the most 
general form, since the form of the function ~o(~) is arbitrary. To substantiate this statement,  we consider a 
simple special case. For this, we use a linear combination of two generators: 

G .  0 = a G  x �9 0 + bGk s �9 0 (11) 

such that ~o(~) - 1 for both G x �9 0 and for Gks  �9 O. In this case, we have 

e x ( C , t )  = eks( ,t) = 

The explicit form of transformations that correspond to (11) is 

p* = p + ~rge a erf z + b erf z , T* = T Jr- ~ -  4• 

(12) 
. . . .  e- 2-~st 

V kst ' A~ AT + T O 2(xt) 3/2 ' A* s As + S ~ 2(kst)3/2 " 

As can be seen from (12), the transformations from the old coordinates to the new ones are of an additive 

diffusive character in the presence of two split dynamic layers (temperature and salt), whose dimensions vary 
according to the laws ~ and Vrk--~, respectively. It is evident that the corrections to the temperature field 
and to the gradient of the initial temperature-stratification distribution depend on the thermal diffusivity, 
while corrections to the salinity and to the gradient of the initial salt-stratification distribution depend on the 
diffusion coefficient of the salt. 

The obtained result is directly related to the stability of experimental data on thermoconcentrational 
convection. The fact is that if an experimental basin is filled layerwise, after the accomplishment of the 
procedure, some time should be allowed for smoothing of the sharp density gradients on the boundaries of 
the layers and for formation of stratification with a constant gradient. Ideally, to achieve a constant gradient, 
an infinitely long period of time should be allowed to elapse. Since this is impossible in real situations, 
one has to perform the experiments in the presence of diffusive processes, using diffusive corrections to the 
constant density gradient of the initial expected stratification. At the same time, from (12) it follows that 
Eqs. (5) of thermoconcentrational convection are invariant with respect to variation in fields due to similar 
corrections. This means that the fundamental properties of flows are stable against diffusive disturbances of 
density distributions in experimental basins and under natural conditions. 

Here it should be emphasized once again that the properties of the generators G x �9 0 and Gk s �9 0 are 
not restricted to transformations (12) but are determined by the form of the function ~o(~) in each particular 
case. 

S p a c e - I n v a r i a n t  P r o p e r t i e s  of  Convec t ive  Flows. Group analysis results (8) are obtained from 
the initial convection equations with the temperature and salt source functions equal to zero. Hence, the 
generators Gi �9 0 give rise to the so-called groups GD of differential operators. Imposition of the invariance 
condition of the source functions with respect to the operators Gi.  0 and allowance for the boundary conditions 
reduce the number of allowable operators. We further consider only those situations in which the salt-source 
function is identically equal to zero, which allows direct comparison with the experimental results of [3, 5, 6] 
to be made. 

Irrespective of the type of fluid stratification (salt, temperature, or both simultaneously) the point 
heat source F ( R ,  t) = Fog(x )6 (y )~ ( z )O( t )  admits the generator G2- 0, which means that the arising flow has 
cylindrical symmetry. 

The flow structures for a horizontal [F(R,  t) = Fo6(y)6(z )O( t )  or Fo~(x)6(z)O(t )]  and vertical [F(R, t) = 
Fog(z)6(y)O(t)]  linear sources are invariant with respect to transfers along the sources (generators G3"0.. .  Gs'0 
for A~ = B~ = C~ = 0), respectively. 
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The flow from a vertical plane source F(R,  t) = Fo6(y)O(t) displays invariant properties with respect 
to transfers that  are parallel to the source plane (generators G3 �9 0 and Gb- 0 for A~ = C~ = 0). 

A horizontal plane source IF(R, t) = Fo6(z)O(t)] admits the generators G2" 0 . . .  (:74" 0 for A[ = B~ = 0, 
which means the occurrence of structures that are invariant with respect to transfers and turns in a plane 
parallel to the source plane, which includes the symmetry of Benard's cells. All the above-mentioned invariant 
properties of flows have been observed experimentally [3, 5, 6]. 

None of the types of sources admits the generator G8 �9 0, which implies the invariance of flow with 
respect to shifts in time, which, in turn, emphasizes the transient character of formation of convective flow. 

The results of [3] for convection from a horizontal plane heat source, which revealed not only convective 
cells of hexagonal form, but also complex ornamental patterns of cells, indicate that the condition of filling of an 
infinite plane by a regular polygon is not a universal criterion for the existence of convective cellular structures 
of Benard's type. Thus, the question arises of whether group analysis results are applicable to similar structures 
and doubts are cast upon the universality of group methods as applied to convection problems considered 
here. This apparent contradiction is solved if we take into account that, strictly speaking, the generators 
describe the local properties of the medium, for example, the symmetry of flow inside a cell as a small-scale 
formation. Thus, the possibility of describing, in terms of these generators, regular plane pictures obtained 
by means of only two translational vectors is an exception rather than the rule. From this point of view there 
is no contradiction between group-theoretical and experimental [3] results. 

A similar problem arises in describing convection from a horizontal heated cylinder [3], where in a 
small area around an individual buoying jet, the flow displays cylindrical symmetry but, at the same time, 
there is a translational invariance of the entire flow along the heat source. 

Sca l e - Inva r i an t  P r o p e r t i e s  of Convec t ive  Flows. The dependences of the spatial and temporal 
scales of convective structures on the power input and on the initial te r ,  perature- and salt-stratification scales 
is of great interest. 

We dwell first on the dependence of the scales on the power input. For this, we use a linear combination 
of generators of the form 

G- 0 = G, �9 0 + a (AT) G x �9 0 + b(As) G~, s �9 O. (13) 

Selecting the appropriate functions a(AT), b(As) and ~x(~), ~l,s(~), one can obtain the operator G. 0 
in the form 

G . O =  x.O:: + y . a y  + z . 0 ,  + 2 t .Ot  - ( 2 p +  P ( z , t ) ) . O p  

- (3rn. r + M- t (z, t))- 0 ,~  - (3m~ + M8 (z, t ) ) .  0,~ 5 - u .  0~, - v .  O~ - w .  Ow. (14) 

The following step involves application of generator (14) to system (5) with a heat source. The explicit form of 
transformations of variables that are governed by generator (14) is obtained by integration of the Lie equations 
corresponding to this generator and having the form 

dis = -2 i  5 - P(~',t), drh'r = -3 f f~  - M-r(~,{), drh8 _ 3rh8 _ M6(~,t) 
de 

(the tilde denotes the new variables and ~ is a group parameter). In addition, the that condition ~ = 0 is a 
stationary point of transformation should be satisfied, i.e., 

= x ,  = 

etc., over all variables. 
The next step in using group analysis results consists in replacing the old variable by new ones in 
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system (5). The rules for the replacement are obtained after integration of the Lie equations, which gives the 
following transformation laws for the variables: 

= kx,  ~ = ky,  ~. = kz ,  t = k2t, fi = k - l u ,  ~) = k - l v ,  Co = k - l w ,  

In k ~ In k 

1 1 

Here k = e~; the derivatives with respect to spatial coordinates and time are transformed as 

O = k  0 a k2O 
a ~ '  ' "  0-7 = 0-7'  

and a term containing the source as 

s y, z, t) = k3-~s 0, ~, ~) 

(d is the dimensional parameter of the source). 
Substitution of the resulting relationships into the equation of system (5) for transfer of the quantity 

m s yields 

0f + a .  fZr~ + Co ~ + ~ = k~Az,~ + k~A~6 + k-2-dP(~, 0, ~, ~), 

where V and /~  are nabla and delta operators in the new variables. 
The scales of dynamic structures vary with variation in the source intensity. Therefore, the invariance 

of (5) with change in source intensity can be achieved only by compensation of this change by the coefficient 
of the source term. Let the intensity of the source increase by q times. Then for the invariance of the equations 
it is necessary that  the following relationship be fulfilled: 

k = ql/(2+d). 

In the general case of a heat source with dimensionality d, which can be noninteger (for example, if the source 
has the form of a fractal Koch's figure), the dependence of the spatial scale on the power input is representable 
a s  

L = Lo(v, X, ks,  a, 3 , . . . )Flo 1(9+d) 

(L0 is a quantity independent of the source intensity F0). 
We use this relationship for special cases. 
Point Heat Source. The source function is given by F (R ,  t) = FoL(z)6(y)6(z)O(t).  Then 

i = Lo(v, X, ks,  a, 3 , . . . ) F ~ / 2 .  

Linear Heat Source. In the general case, F ( R , t )  = FoL(x)6(z - y tan 7)~(t), where 7 is the slope of 
the source to the horizon. As a result, the following relationship holds: 

L = Lo(v, X, ks ,  a, 3 , . . . ) F d / 3 .  

Plane Heat Source. In the general case, the source can be given by F (R ,  t) = FoL(z + a .  x + b. y)O(t), 
where a and b determine the spatial orientation of the plane. Then, with a change in power, the scale changes: 

L = Lo(~',X, k s , ~ , 3 , . . . ) F ~ / 4 .  

In the case of a point source the results of [13] agrees with the result of this paper. 
If an admixture source rather than a heat source is placed in a medium it turns out that the same 

dependences as for a heat source hold. Thus, if the buoyancy of the admixture is negative (salt, sugar, etc.), 
the flow pattern is specularly reflected from the plane z = 0, as was shown in [10]. 
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In the study of the relationships between the dimensions of the structural elements and the initial 
temperature  and concentrational stratifications, one of the main problems is that  of finding those functions 
of physical fields whose spatial scales vary in proportional to A~, and A b (a and b are arbitrary numbers). 

For this, we shall compose a linear combination of the generators 

G .  0 = G1 �9 0 + AG x �9 0 + B G k s  " O, (15) 

where A and B are numbers that,  in the general case, satisfy the relationships 

A~ , As a A~. r , AT 4As + B k - - ~ J ' } s  t = --.__ (16) 4AT + , . x T 0 , , x t  = a ' 

The fulfillment of relationships (16) automatically ensures derivation of the sought-for relationships. 
Integration of (15) makes it possible to introduce the function 

~ = rn~ - 1-[k~/2J~ + k-a/2J'}s.] , (17) 
3 t 

whose spatial scales are proportional to A~ and A~ with the simultaneous scale-invariance of the function 
with a change in AT and As. 

As follows from (8), Jx and Jks are, in the general case, functions of the form 
OO 

z, t) = j At, As)e4-i~z-~2),t (18) 

We consider the simplest case where the governing function ~((,  AT, As) is uniform for all Ja and has the 
form 

~(~, AT, As) = -16"(~)  (19) 

[6(~) is a Dirac's delta function]. 
Substituting successively (19) into (18) and the results of integration into (17) and passing over to the 

initial physical fields of temperature T and salinity S, we obtain the function ~ in explicit form: 

(the designations 7 ~ and S were introduced earlier and describe the total temperature  and salinity fields). 
For )~ = 0 and/~ = 1, from (20), we obtain 

qlo = l + f l $ -  o~T = H, g21= - x  - ks  + xc~7 " - k s 3 $  = G, 

where H and G are the reduced density and the kinetic dilation potential, which were used in [13] as field 
variables. 

Depending on power input, three types of layered flow from a point source were distinguished in [16]. 
For the first type of the flow, the limiting height of the structure is achieved immediately owing to a primary 
convective jet which arises directly from the source and, for a second type, secondary convective cells which 
sequentially form above the primary dome are taken into account. A third type is intermediate between the 
above two. In all cases, as was shown in experiments, the structure height is proportional to Flo/2. We consider 
the formation of flow taking into account that  the height of convective cells (thickness of layers) is proportional 

~ l / r  [16]. t o ,  0 
As the heat source is switched on, the overheating of the fluid located in the nearest vicinity reaches 

tens of degrees. As follows from [13], the primary heat jet height is proportional to Flo/2. Let the structure 

height be defined as Lst = LoFd/2, the the primary jet height as Lp = L1F 1/2, and the convective cell height 

as Lc = L2F  1/7, where L0, L1, and L2 are constant quantities which are determined by the fluid parameters. 
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Let n(Fo) be the dependence of the number of convectie cells (layers) on power. Then, in the first case 
(at the center of the structure), we have L,tl = Lp~. On the others hand, Lstl = n(Fo)Lc. As a result, 

Lo F:/14 
n(Fo) = L--2 o �9 

In the second case, L3t~ = Lp2 + n(Fo)Lc, and hence 

n(Fo) - Lo - L, F~/14. 

In the .intermediate case, where some layers are formed near the primary jet and the other are generated 
by secondary sources above the primary jet, a similar analysis shows that the total number of layers is also 
proportional to F2 D4. 

Since the number of layers n is a natural quantity, the dependence n(Fo) has a stepwise character with 

an envelope behaving as F2/~4. Hence, it also follows that there are some critical power values for which the 

number of layers is increased by one. These critical values are defined by the relationship F~,, = (n/No) 14/5 
(No is a constant determined by the medium's parameters, n = 1,2, . . . ) .  

The resulting dependence n(Fo) ,'., FSo/14 is universal for all power values where the layered convection 
regime is realized. 

In this investigation it was assumed that the kinetic coefficients of the medium are constant and 
independent of temperature and the admixture concentration. This is not valid for all fluid and gaseous 
media. Therefore, in a more thorough study of dynamic structures it is necessary to take into account the 
properties of particular media more precisely and reflect this fact even in the initial hydrodynamic equations. 

Analysis of the system of equations of thermoconcentrational convection for a stratified fluid shows 
that the iniroduction of generalized density disturbances facilitates accomplishment of group analysis and can 
be recommended for numerical modeling of convection processes. 

The introduced generalized density disturbances are shown to be universal in the sense that they 
describe all possible combinations of temperature and concentration of admixtures that are obtained in the 
system of thermoconcentrational convection equation by linear combination. 

The resulting partially symmetrized system involves field variables (temperature and concentration of 
admixtures) and the corresponding kinetic coefficients (thermal diffusivity and salt diffusivity). 

An infinite-dimensional group of transformations that reflects the symmetry properties of flows over 
various types of sources is determined. 

The splitting of variation scales for various variables (velocity, temperatures, and salt) is a universal 
property of thermoconcentrational convection. 

Without employing additional hypotheses, dependences of the global scale of the structure and its 
individual elements on power input (buoyancy flow), which are in agreement with experimental data for 
convection, are obtained. 

It shown that the infinite set of functions that display invariant properties with change in the initial 
stratification scale-includes the reduced fluid density and the kinetic dilation potential. 

This work was supported by the Russian Foundation for Fundamental Research (Grant 93-05-8291). 
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